How digital camera WORK? What exactly going on behind the lenses of a digital camera? The image sensor employed by most digital cameras is a charge coupled device (CCD). Some low-end cameras use complementary metal oxide semiconductor (CMOS) technology. While CMOS sensors will almost certainly improve and become more popular in the future, they probably won't replace CCD sensors in higher-end digital cameras. Throughout the rest of this article, we will mostly focus on CCD. For the purpose of understanding how a digital camera works, you can think of them as nearly identical devices. Most of what you learn will also apply to CMOS cameras. The CCD is a collection of tiny light-sensitive diodes, which convert photons (light) into electrons (electrical charge). These diodes are called photosites. In a nutshell, each photosite is sensitive to light -- the brighter the light that hits a single photosite, the greater the electrical charge that will accumulate at that site. One of the drivers behind the falling prices of digital cameras has been the introduction of CMOS image sensors. CMOS sensors are much less expensive to manufacture than CCD sensors.
Both CCD and CMOS image sensors start at the same point -- they have to convert light into electrons at the photosites. If you've know How Solar Cells Work, you already understand one of the pieces of technology used to perform the conversion. A simplified way to think about the sensor used in a digital camera (or camcorder) is to think of it as having a 2-D array of thousands or millions of tiny solar cells, each of which transforms the light from one small portion of the image into electrons. Both CCD and CMOS devices perform this task using a variety of technologies.
CCD vs. CMOS Sensors
Once the light is converted into electrons, the differences between the two main sensor types kick in. The next step is to read the value (accumulated charge) of each cell in the image. In a CCD device, the charge is actually transported across the chip and read at one corner of the array. An analog-to-digital converter turns each pixel's value into a digital value. In most CMOS devices, there are several transistors at each pixel that amplify and move the charge using more traditional wires. The CMOS approach is more flexible because each pixel can be read individually. CCDs use a special manufacturing process to create the ability to transport charge across the chip without distortion. This process leads to very high-quality sensors in terms of fidelity and light sensitivity. CMOS chips, on the other hand, use completely standard manufacturing processes to create the chip -- the same processes used to make most microprocessors. Because of the manufacturing differences, there are several noticeable differences between CCD and CMOS sensors.
Based on these differences, you can see that CCDs tend to be used in cameras that focus on high-quality images with lots of pixels and excellent light sensitivity. CMOS sensors usually have lower quality, lower resolution and lower sensitivity. However, CMOS cameras are less expensive and have great battery life. Resolution The amount of detail that the camera can capture is called the resolution, and it is measured in pixels. The more pixels your camera has, the more detail it can capture. The more detail you have, the more you can blow up a picture before it becomes "grainy" and starts to look out-of-focus. Some typical resolutions that you find in digital cameras today include:
Resolution: Printing Pictures For instance, printers made by Hewlett Packard that use PhotoREt III technology can layer a combination of up to 29 drops of ink per dot, yielding about 3,500 possible colors per dot. This may sound like a lot, but most cameras can capture 16.8 million colors per pixel. So these printers cannot replicate the exact color of a pixel with a single dot. Instead, they must create a grouping of dots that when viewed from a distance blend together to form the color of a single pixel. The rule of thumb is that you divide your printer's color resolution by about four to get the actual maximum picture quality of your printer. So for a 1200 dpi printer, a resolution of 300 pixels per inch would be just about the best quality that printer is capable of. This means that with a 1200x900 pixel image, you could print a 4-inch by 3-inch print. In practice, though, lower resolutions than this usually provide adequate quality. To make a reasonable print that comes close to the quality of a traditionally developed photograph, you need about 150 to 200 pixels per inch of print size. On this page, Kodak recommends the following as minimum resolutions for different print sizes:
Capturing Color
|
|||||||||||||||||
|